Human Growth Hormone: Does it enhance physical performance?

By

Sean Casey
Human Growth Hormone-Part I: Does it enhance physical performance?

By Sean Casey

Quick Hit Summary

Human Growth Hormone (HGH) has been shown to improve body composition in individuals clinically deficient in the hormone. Thus, many athletes have designed their workouts around maximizing the release of this hormone. However, current research does not support the theory that HGH stimulating workouts actually increase muscle protein synthesis. HGH workouts may increase fat loss but more research needs to be completed in this area. Multiple studies have also looked at if oral amino acids (L-arginine, L-ornithine, GABA, etc) can enhance natural HGH production. Currently, very little evidence supports their use in young or old individuals.

Human Growth Hormone

Human growth hormone (HGH). Is there a hormone over the past 10 years that has gained more attention in main stream media? During this time period, it has gone from a word generally reserved for the scientific community to a common household term. Much of this can be attributed to well known athletes such as Barry Bonds, Roger Clemens, Marion Jones and others who have been linked to this performance enhancing drug. Even non athlete celebrities, such as Sylvester Stallone, swear by it. Due to its name, many individuals commonly believe that human growth hormone (HGH) will improve muscle size and strength. Furthermore, HGH has been shown to improve body composition (ie- lean body mass, % body fat) in those clinically deficient in the hormone¹. For these reasons, HGH has piqued the interest of both competitive athletes and exercise enthusiast.

The Effects of Exercise Induced Human Growth Hormone on Muscle Hypertrophy and Strength

Single Training Session

HGH is naturally produced by the body in response to intense workouts that are characterized by high rep sets and short rest intervals (ie- the same type of workouts that create a “burning” sensation in your muscles due to lactic acid buildup)². These workouts have been shown to significantly increase circulating HGH concentrations for up to 30 minutes post-exercise in both men and women. Recently, West et al. analyzed the relationship between exercise induced HGH elevations and muscle growth. In the first of their 2 studies, 8 healthy, untrained males (mean age- 20 years) completed 2 separate resistance training sessions; one was a high hormone (HH) session that significantly increased HGH release (single arm preacher curls followed by intense leg training) and the other was a low hormone
(LH) session which failed to increase circulating HGH levels (preacher curls only; completed on the arm opposite of the one used in the HH session). Following each session, researchers measured the rate of myofibrillar protein synthesis (MPS) in the bicep of the respectively trained arm. (For reference, **myofibrillar proteins** are the proteins which are responsible for generating force in the muscle during muscular contraction. Via resistance training, one increases the synthesis of myofibrillar proteins, leading to gains in both muscle strength and size.). Results indicated that despite increasing circulating HGH levels (~800%), the hormone stimulating workout failed to significantly improve MPS vs. the arm only training session.

![Muscle Protein Synthesis after Low and High Hormone Training Sessions](image)

Figure 1 % Increase in muscle protein synthesis after high and low hormone training sessions. As you can see, the low hormone session increased muscle protein synthesis by 78% whereas the high hormone session increased it by 61%. These differences were not statistically different from each other.

Please don’t misinterpret the graph... If one quickly looks at the graph, he/she may assume that the LH session increases muscle protein synthesis vs. HH session. However, I must emphasize that these differences were not statistically significant.

Chronic Training

The aforementioned study only looked at how a single session influenced the rate of muscle protein synthesis. One may naturally wonder what would happen if this protocol was repeated over an extended time period. Maybe, the cumulative effects of elevating HGH levels would influence MPS. Thankfully for us, this very question was answered in a 2nd study completed by West et al. The design
and exercise routine of this study was similar to their previously mentioned study except participants (12 untrained males; mean age 21.8 years) completed 15 weeks of training using the following routine:

- Weeks 1-6: exercised 3x/week alternating between HH (single arm preacher curls and LH routines every other training day.
- Weeks 7-15: exercised 4x/week alternating routines every other training day.

Pre- and post- workout protein shakes have been shown to influence muscle growth and are commonly used by athletes. Thus, each participant received 18 grams of whey protein just prior and again 90 minutes following each session to mimic real life training. At the completion of the 15 week training period, West et al. examined increases in muscle size and strength of each arm. Both biceps, regardless of if it was trained under the HH or LH conditions, experienced similar increases in both muscle size (Figure 2) and strength gains (Figure 3).

Figure 2. % Increase in Type I and Type II muscle fiber size following 15 weeks of a high or low hormone training protocol. The method of training (high hormone, low hormone) had no effect on changes on either type 1 or 2 muscle fiber size.

For reference, Type 1 are “slow” twitch muscle fibers and used primarily for endurance based training and smaller in size. Type II are “fast” twitch muscle fibers and used primarily for max strength/power based contractions. They are much larger in size vs. Type I. Also, there were no significant differences in muscle fiber size between groups at the start of the trial.
The Effects of Exercise Induced Human Growth Hormone on Fat Loss

Although exercise induced HGH workouts will not enhance muscle growth, they may be useful for decreasing body fat. One of the physiological functions of HGH is to increase lipolysis (breakdown of fat for energy purposes). There has been some evidence that intense exercise, which stimulates HGH, may decrease total abdominal fat. This was demonstrated in a study completed by Irving et al. in which 27 middle aged women (mean age – 51 years) were assigned to a control, low intensity or high intensity aerobic training program for a total of 16 weeks. Duration of each exercise session was adjusted such that individuals in the high and low intensity training groups burned equal kcal/session. At the conclusion of the study, those participating in the high intensity training group saw significantly greater losses in visceral and total abdominal fat vs. those in the low intensity group. Study authors hypothesized that results were due to greater release of lipolytic hormones (such as HGH). On the other hand, when men of a similar background were added to the study results, (exercise conditions held exactly the same) no differences were present between groups.
Study Limitations

There are two caveats worth mentioning regarding the aforementioned studies looking at high intensity aerobic workouts, HGH and fat loss. First, dietary records were not kept. Thus, differences in dietary intake may account for the changes seen. Second, Irving et al. did not present data reflecting HGH levels in the study involving the 27 middle aged women. As such, there is a lack of definitive evidence indicating that exercise induced HGH release leads to greater losses in fat mass vs. exercise of equal kcal expenditure that fails to raise circulatory HGH release. Also, I’m unaware of any study which has looked at this potential benefit in a young, healthy adult population. Thus, with respect to the scientific literature, the jury is still out on the effectiveness of exercise inducing HGH workouts on accelerating fat loss vs. non HGH stimulating aerobic workouts of similar kcal expenditure.

Growth Hormone Secretagogue

If one looks on the internet, he/she can find many products that are alleged to enhance the body’s natural production of HGH. These products, commonly referred to as HGH secretagogues, often consist of the amino acids Gamma-aminobutyric acid (GABA), arginine, ornithine, and lysine.

Gamma-aminobutyric acid

Research has indicated that Gamma-aminobutyric acid (GABA) stimulates HGH secretion in subjects at rest. For this reason, its been advertised to strength athletes as a natural way to “stimulate secretion of growth hormone, decrease body fat levels and increase lean muscle tissue.” Using this as a backdrop, Powers et al examined if 3 grams (g) of GABA would enhance both resting and exercise induced levels of HGH. On four separate occasions (2 resting sessions, 2 exercise sessions), 11 resistance trained men (mean age- 23.6 years) received either HGH or a placebo treatment. Blood levels of ifGH, which is believed to be the biological active form of HGH, was measured for 90 minutes following ingestion. At rest, GABA supplementation significantly increased mean ifGH levels vs. placebo (>300%). Also, GABA vs. placebo tended to increase ifGH levels during exercise. At 30 minutes post-ingestion ifGH was significantly greater (175%) in the exercise + GABA vs. exercise + placebo. It also tended to be higher over the entire 90 minute observation period.

To my knowledge, the effect of long term GABA supplementation on body composition in active or sedentary individuals has not been studied.

Arginine

Arginine is one of the more popular amino acid HGH secretagogues. Evidence exists indicating that oral doses of 5 and 9 grams of arginine could significantly increase HGH levels in resting individuals. In a classic study completed by Collier et al., the effects of arginine on resting and exercise (including post-exercise) HGH levels were examined. Their study involved 8 males (mean age- 20.4 years) who participated in the following four sessions:
Circulating HGH levels were measured after each exercise or resting session. With respect to stimulating HGH release, results were as follows:

(In descending order of greatest HGH stimulation over entire measuring time frame)

#1: Exercise + Placebo
#2a. Exercise + Arginine
#2b. Rest + Arginine
#3. Rest + Placebo

Supplementing with arginine did increase HGH vs. baseline values. However, the greatest HGH levels were found after exercise-placebo session, followed by exercise-arginine session. Let me put this another way. Arginine + exercise actually DECREASED HGH (by 50 %) vs. exercise alone when measured over the entire recording period. Additionally, as seen in Figure 4, Arginine also blunted the peak HGH release normally seen during exercise.

Figure 4 Percent increase in HGH levels vs. baseline after arginine consumption and exercise. All of these increases were significantly greater than baseline measurements.

It should be noted that some studies have failed to find any benefit of arginine on HGH levels. This was seen in a study completed by Marcell et al. who gave ~ 4 grams of arginine to both young (mean age-22)
and older (mean age- 68.5) participants14. In contrast to Collier et al.13, Marcell et al.14 failed to find any stimulatory effect for arginine on HGH levels in subjects at rest. Arginine also came up short with respect to enhancing exercising HGH levels. These results were observed in both the older and younger age groups. It should be mentioned that no placebo pill was given in this study. Rather, they just compared HGH levels during and following an exercise only session vs. arginine(4g) + exercise session.

\textbf{Amino Acid Combinations}

\textbf{L-arginine & L-lysine}

Suminski et al. gave 16 men (mean age- 22.4) 1.5 g lysine + 1.5 g arginine under both resting and exercising conditions15. At rest, HGH was significantly increased (270%) 60 minutes post ingestion, but no significant differences were found at 30 and 90 minutes. During exercise conditions, \textbf{no significant differences were seen between the amino acid and placebo treatments.}

\textbf{L-arginine, L-ornithine & L-lysine}

Fogelholm et al. completed an interesting study in which 11 trained weightlifters (19-35 years of age), took L-arginine, L-ornithine & L-lysine prior to a training session as well as just prior to going to bed16. 1 g of each amino acid was taken at both time periods for a total daily dose of 6 grams. After four days of this routine, the researchers found that \textit{“*supplementation did not affect the physiological variation of serum hGH concentration*.”}16

\textbf{L-arginine & Aspartate}

Abel et al. randomly assigned 30 endurance trained athletes to either a placebo, high supplement (5.7 g arginine and 8.7 g aspartate), or low supplement (2.8 g arginine and 2.2 g aspartate) groups for a duration of 4 weeks17. At study’s conclusion, \textbf{Abel et al. found no differences} in HGH levels between any of the groups.

\textbf{What does this all mean?}

When an effect is seen with amino acids on circulating HGH levels, it appears to occur only under resting, fasted conditions. The important question one has to ask themselves is, \textit{“Do these small transient increases in HGH, induced by amino acids, have any significant effect on body composition or performance?”} Exercise induced HGH secretions were shown to have no effect on myofibrillar protein synthesis (MPS), muscle strength or size in the aforementioned study by West et al.34. This lack of effect on MPS occurred despite an 8 fold increase in peak HGH levels4, which is greater than the peak increase seen with most of the amino acid supplements18.

Before I go any further evaluating all of this research on amino acids and HGH, there is one \textbf{BIG} problem that needs to be mentioned. As pointed out by Chromiak and Antonio, HGH secretions are usually
stimulated to a greater degree following an overnight fast18. Thus, if you’re going to take these HGH secretagogues, one should probably do it on an empty stomach. In the above studies that showed a positive effect of GABA11 and arginine13 on HGH, the amino acids were given following an overnight fast. In addition, individuals in the GABA and arginine trials waited > 90 minutes before having any food after the amino acid ingestion. When putting this into practice, I feel that it would be very foolish for any exerciser/athlete to follow this type of a fast. After an overnight fast, catabolic forces are at full throttle in your body, destroying your hard earned skeletal muscle20. This metabolic state must be reversed and one of the best ways to accomplish this is by eating anabolic foods... one should not prolong it simply to get a little more benefit from an amino acid HGH secretagogue!

Don’t get me wrong. I’m not saying that taking supplements containing amino acids are bad. In fact some studies have shown a beneficial effect of taking some of the above mentioned amino acids. Elam et al. found that taking 1 gram of both arginine and ornithine in conjunction with a 5 week resistance training program led to significantly greater gains in lean body mass and total strength vs. those taking a placebo19. However, I feel these gains are completely independent of HGH. As seen in the studies by West et al., HGH does not appear to increase MPS in young, healthy individuals.

What About taking These Amino Acids as You're Getting Older to Assist HGH

If I wanted to play the devil’s advocate, I could point out that all but 114 of the studies showing little to no effect were done on a younger population who normally have high HGH levels. However, research seems to indicate that with increasing age, one is less responsive to a given dose of various HGH secretagogues21. A dose of 1.5 g lysine + 1.5 g arginine has been shown to stimulate HGH in young adults (mean age 22.4)15. Yet, even when this dose is quadrupled (6 g of each amino acid), HGH levels fail to significantly rise in older adult men (mean age- 69)22.

Bottom Line

There’s strong evidence that exercise induced HGH secretions have no anabolic effect on the contractile fibers (myofibrillar proteins) of muscle tissue in healthy (ie- not clinically deficient in HGH) populations. With respect to the current scientific literature on fat loss, the jury is still out on if exercise inducing HGH workouts (aerobic) are more effective than non HGH inducing workouts (aerobic) when kcal expenditure is held constant. If you’re going to do high rep, short rest intervals do it to train a certain metabolic system, not spike hormone levels.

Various studies provide evidence that amino acids can act as HGH secretagogues in resting individuals111213. However, this finding is not universal amongst all studies14. Additionally, when taken prior to a training session, it appears that taking HGH secretagogues will have no effect or actually reduce the exercise induced levels of HGH.

Amino acids are great supplements to use in conjunction to an exercise program due to their ability to directly stimulate protein synthesis23. I use various amino acid supplements myself. However, the
current scientific research just doesn’t support their ergogenic effect via a HGH pathway/mechanism. Rather I think they work via a non-HGH pathway/mechanism to enhance muscle size/performance. For this reason, I feel they are wrongfully promoted as “HGH Secretagogues” since their beneficial effect on body composition/performance is likely through a non-HGH pathway.

And with that, Human Growth Hormone-Part I comes to an end, but **stay tuned for Part II of this story when we bring out the big boy… HGH injections!!!**

References

— Sean Casey

About the Author: Sean Casey is a graduate of the University of Wisconsin- Madison with degrees in both Nutritional Science-Dietetics and Kinesiology- Exercise Physiology. Sean graduated academically as one of the top students in both the Nutritional Science and Kinesiology departments.

Field Experience: During college, Sean was active with the UW-Badgers Strength and Conditioning Department. He has also spent time at the International Performance Institute in Bradenton, FL where he worked with the USA U-18 National Men's Soccer team. More currently, he has worked with multiple NFL1st round NFL draft picks and All-Pro NFL athletes at the Athletes Performance in Tempe, AZ.. On August 1st, 2010, he will be launching his own business, CasePerformance.com.
Human Growth Hormone- Part II: Does it enhance physical performance?

By Sean Casey

Quick Hit Summary

HGH injections are a hot topic in both the athletic and anti-aging communities. However, there is little scientific evidence to support the notion that HGH alone will provide much benefit for either group. Currently there is no evidence that HGH alone will increase strength, vertical jump, or aerobic capacity (VO2) in trained or untrained athletes. However, it does appear to increase anaerobic capacity in recreational strength athletes. These effects appear to be amplified when co-administered with testosterone. A similar lack of effect with HGH alone has been seen in older individuals. HGH does appear to have a strong anabolic effect on collagen, the main protein in connective tissue (tendons, cartilage, ligaments). Increased fat loss has also been observed in those receiving HGH. Adverse affects were reported in all the studies that examined HGH administration. Most common side effects were joint pain, edema, and carpel tunnel.

HGH Injections

In the first part of this article, we observed a lack of evidence supporting the use of popular amino acids purported to stimulate HGH secretion. Furthermore, it was noted that exercise induced HGH secretions failed to enhance myofibrillar protein synthesis (MPS) (the proteins which are responsible for generating force in the muscle during muscular contraction), muscle strength, and/or muscle size. I know what you’re thinking right now… The studies reviewed in Part I of this article examined the effects of exercise induced or HGH secretagogues on increases in HGH. Individuals who take HGH injections to increase muscle size and strength often take supraphysiological doses far larger than those induced by these methods. Furthermore, HGH injections clearly benefit individuals clinically deficient in the hormone. So, the question still exists, “Do HGH injections benefit physical performance”?

The Effects of Human Growth Hormone Injections on Muscle Hypertrophy and Strength

Untrained Individuals

Yarasheski et al. studied the effects of HGH injections on changes in strength and body composition amongst 16 previously untrained men (mean age- 27 years) following a 12 week resistance training program. Each participant was randomly assigned to either a placebo or the experimental group which received 40 μg rHGH/kg/day. Prior to initiating the 12 week training program, no significant differences were present between groups with respect to body composition (total body weight, fat mass, fat free mass). At study’s end, it was found that HGH injections did not significantly increase muscle strength...
gains (9 common exercises tested including shoulder, bench and leg presses) or size between the 2 groups. This happened despite significantly increasing circulating HGH (6x) and IGF-1 (4x) levels vs. placebo treatment (See below for explanation of IGF-1).

Both groups experienced similar gains in total body weight. Although not quite statistically significant (p= 0.056) the HGH group tended to experience losses in fat mass. Those receiving HGH did experience significantly greater gains in fat free mass (which includes lean muscle tissue, connective tissue, body fluid, etc) vs. placebo. However, as pointed out by Yarasheski et al., no significant differences in muscle protein synthesis were found between groups. Furthermore, greater water retention was found in those given HGH. Thus, the research team concluded that chronic HGH injections do not augment muscle gains commonly observed following a 12 week resistance training program. Finally, it should be noted that the study originally included 18 individuals. However, 2 of the individuals receiving HGH had to drop out due to symptoms of carpel tunnel.

Insulin-like growth factor (IGF-1) is another hormone produced by the body that has anabolic effects on muscle tissue. As seen in Figure 1, HGH stimulates the release of IGF-1, which is then believed to stimulate growth of muscle tissue. Few published studies have examined the effects of administering only IGF-1 on muscle growth. A study completed by Friedlander et al. indicated that receiving IGF-1 had no benefit on body composition or muscle strength in postmenopausal women.

![Proposed Molecular Pathway for Muscle Growth](image)

Figure 1. The hypothesized hormone pathway leading to increased muscle protein synthesis. Please note that this is an EXTREMELY over-simplified look at the process. Note the blue arrows coming in from the side. These represent other factors that are capable of increasing or decreasing the activity of this pathway.
Similar to HGH, current literature does not support the use of exogenous (of external origin) IGF-1 in already healthy individuals\(^3\). A more in-depth look at IGF-1 is beyond the scope of this article. For those interested in further discussion on it, I highly recommend reading Regulation of muscle mass by growth hormone and IGF-I. If you click on the title, this peer reviewed literature review can be obtained for free.

Trained Individuals

Deyssig et al. studied the effects of HGH injections in 18 male, lean, power trained athletes (mean age-23.4; 10% body fat)\(^6\). Over the course of a 6 week period, individuals received a placebo or 30 μg rHGH/kg/day. Despite significantly increasing circulating HGH and IGF-1 levels over this time period, HGH injections did not significantly alter gains in muscle strength, total body weight and fat mass. With respect to adverse effects, a case of carpel tunnel like symptoms developed in one participant using HGH. In closing, Deyssig et al. stated.

“We conclude that the anabolic, lipolytic effect of GH therapy in adults depends on the degree of fat mass and GH deficiency. In highly trained power athletes with low fat mass there were no effects of GH treatment on strength and body composition”\(^6\)

Recently, Meinhardt et al. studied the effects of giving HGH, testosterone or the combination of the two on multiple measures of athletic performance and body composition\(^16\). Over the course of 8 weeks, 96 recreational athletes (>12 months of resistance training experience; mean age – 27.9 years) were assigned to the following groups:

Men (66 athletes)

- Testosterone (250 mg/wk)
- HGH (2 mg/day = ~30 μg/kg/d for a 70-kg person)
- Testosterone (250 mg/wk) + HGH (2 mg/day)
- Placebo

Women (33 athletes):

- HGH (2 mg/day)
- Placebo

Along with body composition, the researchers wanted to examine the effects of this supplementation protocol on VO2, vertical jump, anaerobic capacity (Wingate bike test), and isometric dead lift strength test (bar position not mentioned)\(^16\). At the end of the 8 weeks, all performance variables were the same between groups except the Wingate test. Compared to those taking the placebo, Men and
women who received HGH experienced a 3.9% increase in anaerobic capacity. This increase in performance jumped to 8.3% in men who received both HGH and testosterone. With respect to body composition, HGH decreased fat mass and increased water retention. Body cell mass, an indicator of muscle tissue, significantly increased in those receiving the combined HGH + testosterone vs. placebo.

Six weeks after the final round of injections, Meinhardt et al. reassessed all performance variables to see if there would be any lasting effect. During this 2nd round of testing, all performance measurements were the same, regardless of if you received the placebo or HGH/testosterone treatment. As with the aforementioned studies, swelling and joint pain were common side effects in those receiving HGH.

Meta-Analysis

In a large meta-analysis, Liu et al reviewed all evidence to date (2008) that examined the effects of HGH injections on athletic performance or body composition changes in active, physically fit populations. When combining the results of all 27 studies reviewed, it was found that lean body mass increased and there was a tendency for body fat to decrease. However, performance measurements such as muscular strength and aerobic capacity (VO2max) were not altered. Similar to Yarasheski et al, Liu et al concluded that gains in lean body mass could be attributed to fluid retention rather than increases in contractile muscle proteins. For reference, the 27 studies included 440 participants with the following characteristics: lean (BMI-24), young (mean age- 27 years), physically fit and received a mean dose of 36 μg HGH/kg/day. If you’re interested in reading the full paper (vs. my cliff-not version), it can be found by CLICKING HERE.

Does HGH Affect Protein Synthesis at All?

The question as to if HGH injections have anabolic effects in non-clinical populations may have finally been put to rest by Doessing et al. In their study, 10 healthy, untrained men (mean age- 30 years) received HGH shots for 14 consecutive days (33 μg rHGH/kg/days 1-7; 50 μg rHGH/kg/days 8-14) after which they completed unilateral (single leg) leg extensions. 5 months later, the process was repeated except those who received HGH previously now received a placebo. Despite increasing circulating HGH levels by ~850% and insulin like growth factor (IGF-1) by ~320%, the rate of MPS was not significantly altered while receiving HGH injections vs. placebo treatment. Although MPS did not increase, HGH injections did increase collagen protein syntheses. For those unfamiliar with collagen, this protein serves as “guy wires” in the connective tissue of the musculoskeletal system. It’s found in tendons, bone, ligaments, muscles and cartilage. In contrast to myofibrillar proteins, collagen does not have any contractile properties. Rather it provides structural/connective support. In this study, the HGH injections increased collagen synthesis 1.3-fold in tendon tissue and 6-fold in muscle tissue. This led the authors of the study to conclude that:

“... rather than causing muscle fibre growth, GH/IGF-I appear to stimulate the supporting connective tissue that would help force transmission from the contracting muscle fibres to the bone.”

7 Liu et al., 2008
8 Doessing et al., 2015
9 Yarasheski et al., 2013
10 Liu et al., 2008
Simply put, HGH does not appear to \textit{directly} increase the size or strength of muscle tissue. It may \textit{indirectly} increase muscular force capabilities (via strengthening support tissue), but to my knowledge, this has yet to be shown in exercise based research.

\textbf{What About HGH Injections for Acting as “The Fountain of Youth”?}

Does HGH stem off the physical decline seen with normal, healthy aging? That appears to be the popular question amongst the aging baby boomer population. Many anecdotal stories indicate that HGH can greatly enhance personal well-being and physical function as you age. Current scientific research to support these anecdotal stories is inconclusive and highly debated. In a recent review of the literature (completed in 2007), Liu et al. examined the effects of HGH injections in elderly individuals without any known health problems (ie- free of cancer, heart disease, diabetes, osteoporosis, etc). Their meta-analysis included results of 21 studies, consisting of 220 older, overweight individuals (mean age- 69 years; 33% women; BMI-28). Although great variation existed, the mean duration of each study was 27 weeks and average starting dose was 14 μg rHGH/kg/days. On one hand, results indicated that receiving \textbf{HGH injections (vs. placebo treatment) > 26 significantly increased lean body mass (3.6 lbs; attributed to gains in water vs. actual muscle tissue) and decreased fat mass (5.1 lbs)}. On the other hand, those treated with HGH experienced significantly more “adverse events” such as carpel tunnel, edema, and arthralgias (joint pain). No significant differences were seen in bone density or blood lipid levels between groups.

Unfortunately, as noted by Liu et al., there was not enough information presented on physical function variables (ie- grip strength, 30 second sit-to-stand muscular endurance test, etc) and well-being measurements (mood profile, etc) to statistically analyze all of the purported benefits associated with HGH. However, in the small number of studies that did examine performance gains, \textbf{HGH + exercise did not appear to increase muscular strength in trained10 or untrained11,12 older individuals vs. exercise alone}. Thus, looking only at the scientific data available to them, they concluded.

“Although GH has been widely publicized as an antiaging therapy and initial studies suggested that it might be clinically beneficial and safe in the healthy elderly, we find little evidence to support these claims. The scant clinical experience of GH in the healthy elderly suggests that although GH may minimally alter body composition, it does not improve other clinically relevant outcomes. Substantial evidence suggests that GH use in the healthy elderly is associated with high rates of adverse events. On the basis of available evidence, GH cannot be recommended for use among the healthy elderly.”2

For those interested in reading the full review completed by Liu et al, \textbf{CLICK HERE}

\textbf{HGH + Testosterone}

Although HGH alone does not appear beneficial, Sattler et al. demonstrated that \textbf{HGH + testosterone} was more beneficial than testosterone alone13. Their study involved 122 older, slightly overweight, men (mean age- 70.8 years; BMI- 27.4) with testosterone and IGF-1 levels “typical” for their age group. Over
the course of 4 months, individuals were randomly assigned to receive various low dose testosterone and/or HGH combinations (Please see Table 1).

Table 1 Daily testosterone and HGH doses. Doses were chosen to reflect normal physiological level of these hormones vs. supra-physiological levels seen in other studies.

<table>
<thead>
<tr>
<th>Group</th>
<th>Testosterone Dose</th>
<th>HGH Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td>5 mg/d (5g of a 1% testosterone transdermal Gel)</td>
<td>0 μg rHGH/kg/day (placebo)</td>
</tr>
<tr>
<td>Group B</td>
<td>5 mg/d</td>
<td>3 μg rHGH/kg/day</td>
</tr>
<tr>
<td>Group C</td>
<td>5 mg/d</td>
<td>5 μg rHGH/kg/day</td>
</tr>
<tr>
<td>Group D</td>
<td>10 mg/d (5g of a 1% testosterone transdermal Gel)</td>
<td>0 μg rHGH/kg/day (placebo)</td>
</tr>
<tr>
<td>Group E</td>
<td>10 mg/d</td>
<td>3 μg rHGH/kg/day</td>
</tr>
<tr>
<td>Group F</td>
<td>10 mg/d</td>
<td>5 μg rHGH/kg/day</td>
</tr>
</tbody>
</table>

After 4 months, it was found that increasingly greater hormone doses enhanced changes in body composition this seemed to be augmented with testosterone co-administration13. Individuals who received HGH + testosterone experienced significant increases in total body strength (based off composite scores obtained on leg press, leg flexion/extension, lat pulls & chest press). With respect to cardiometabolic risk factors, insulin resistance, total and LDL cholesterol remained unchanged during the 4 month trial. Additionally, HDL cholesterol increased whereas triglyceride levels decreased. Outside of a small increase in fasting blood glucose, the only significant cardiometabolic risk factor negatively affected was blood pressure (systolic and diastolic blood pressure increased by 12 mmHG and 8mmHG).

Other Possible Benefits of HGH
From an orthopedic standpoint, HGH injections may be useful to those who have muscle-tendon, ligament, bone fractures or cartilage injuries. As seen in the study by Doessing et al., HGH does significantly increase collagen protein synthesis5. Studies completed by Raschke et al.14 and Van der Lely et al.15 provide some support to this possible use for HGH injections. However, more research is needed in this area before a definitive conclusion can be drawn.

Bottom Line

Strong evidence exists indicating that HGH administration does not increase muscle strength or size in healthy populations. Rather, it appears to increase collagen (the main protein in connective tissue such as bones, tendons, ligament, cartilage) and may be useful to those coming off injuries.

HGH injections have been shown to significantly decrease fat mass and increase lean body mass. However, improvements in lean body tissue are likely the result of increased water retention and non contractile tissues vs. actual gains in muscle mass.
Current, peer reviewed, scientific research does not support the “anti-aging” use of HGH in older populations. Although positive changes in body composition are observed, these benefits do not appear to increase strength or aerobic capacity. Resistance training has been shown to be just as effective as HGH + resistance training protocols with respect to increasing strength. Finally, HGH does not appear beneficial when taken alone. On the other hand, one recent study indicated HGH + testosterone does increase lean body mass and increase total body strength. Long term studies must still be carried out to further define potential quality of life/health benefits HGH + testosterone combinations may have in older adults.

References

— Sean Casey

About the Author: Sean Casey is a graduate of the University of Wisconsin- Madison with degrees in both Nutritional Science-Dietetics and Kinesiology- Exercise Physiology. Sean graduated academically as one of the top students in both the Nutritional Science and Kinesiology departments.

Field Experience: During college, Sean was active with the UW-Badgers Strength and Conditioning Department. He has also spent time at the International Performance Institute in Bradenton, FL where he worked with the USA U-18 National Men's Soccer team. More currently, he has worked with multiple NFL1st round NFL draft picks and All-Pro NFL athletes at the Athletes Performance in Tempe, AZ.. On August 1st, 2010, he will be launching his own business, CasePerformance.com.